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DOUBLY CUSPIDAL COHOMOLOGY 
FOR PRINCIPAL CONGRUENCE SUBGROUPS OF GL(3, E) 

AVNER ASH AND MARK McCONNELL 

ABSTRACT. The cohomology of arithmetic groups is made up of two pieces, the 
cuspidal and noncuspidal parts. Within the cuspidal cohomology is a subspace- 
the f-cuspidal cohomology-spanned by the classes that generate represen- 
tations of the associated finite Lie group which are cuspidal in the sense of 
finite Lie group theory. Few concrete examples of f-cuspidal cohomology have 
been computed geometrically, outside the cases of rational rank 1, or where the 
symmetric space has a Hermitian structure. 

This paper presents new computations of the f-cuspidal cohomology of 
principal congruence subgroups F(p) of GL(3, 2) of prime level p. We 
show that the f-cuspidal cohomology of F(p) vanishes for all p < 19 with 
p & 11 , but that it is nonzero for p = 11 . We give a precise description of the 
f-cuspidal cohomology for JT( 11) in terms of the f-cuspidal representations 
of the finite Lie group GL(3, E/11) . 

We obtained the result, ultimately, by proving that a certain large complex 
matrix M is rank-deficient. Computation with the SVD algorithm gave strong 
evidence that M was rank-deficient; but to prove it, we mixed ideas from 
numerical analysis with exact computation in algebraic number fields and finite 
fields. 

INTRODUCTION 

The cohomology of arithmetic groups has been much studied in recent years, 
especially because of its rich connections with number theory and geometry. 
The cohomology is made up of two pieces, the cuspidal and noncuspidal parts. 
The cuspidal part (at least in theory) is the harder to get hold of, while the 
noncuspidal part can be derived inductively from the cuspidal cohomology of 
lower-rank groups using the theory of Eisenstein cohomology. 

Very few concrete examples are known of cuspidal cohomology for arithmetic 
subgroups of algebraic groups, outside the cases of rational rank 1, or where 
the symmetric space has a Hermitian structure. Such examples are of great 
interest because they provide tests for the validity of various conjectures, such as 
number-theoretical conjectures in the Langlands program [4, 8] and geometric 
conjectures in the theory of modular symbols [2]. Finding such examples is 
difficult, and it calls for an interesting mixture of geometrical and computational 
work. 
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In this paper we concentrate on the general linear groups. The case of 
GL(2, E) and its subgroups of finite index is classical and well known. The 
next case, that of GL(3, E) and its subgroups of finite index, is already quite 
difficult. Computation of its cohomology was initiated by Soule [18], and the 
first computer-generated examples of cuspidal cohomology appear in [3]. In 
the general case of GL(n, Z), the only known constructions of cuspidal coho- 
mology arise from "lifting theorems" in the theory of automorphic forms, and 
they always yield "selfdual" automorphic representations. (For a discussion of 
these ideas, see [4, 8, and 14].) 

The purpose of this paper is to present some new computations of the cuspi- 
dal cohomology of principal congruence subgroups F(p) of GL(3, E) of prime 
level p. Our main theorem (2.4) says that the cuspidal cohomology of F(p) 
vanishes for all p < 19 with p :$ 1 1, but that it is nonzero for p = 1 1 . We 
give a precise description of part of the cuspidal cohomology for F( 11), the 
f-cuspidal part (see (1.9)), in terms of the (isomorphism classes of) cuspidal 
representations of the finite Lie group GL(3, EZ/ 11) . (One knows from lifting 
theory that the f-cuspidal part does not exhaust all the cuspidal cohomology- 
see [14].) 

The cohomology classes we discover are interesting for several reasons. 
(1) They correspond to nonselfdual automorphic representations of GL(3), 
as was also the case with the classes in [3]. (2) They give rise to representations 
of the finite group GL(3, Z/p), which are themselves cuspidal in the sense of 
finite Lie group theory (see below for the precise statement). This explains the 
phrase "doubly cuspidal" in our title. (3) They are not in the span of the max- 
imal (2, 1)-modular symbols on the symmetric space for GL(3). This follows 
from (2) together with the main theorem in [2] and resolves a problem raised 
in that paper. 

Some questions related to number theory are to work out the action of the 
Hecke operators on the cohomology classes we have found in this paper, to test 
the generalized Ramanujan conjecture on the Hecke eigenvalues, and to look 
for Galois representations associated with these packages of Hecke data. We 
would certainly also like to know why we found classes only at level 11 and at 
no other prime level p ? 19. 

From the point of view of computational mathematics, perhaps the most 
interesting aspect of our paper is the novel application of standard numerical 
methods to exact computations in algebraic number fields. Our main computa- 
tional problem was to prove that a certain matrix M was rank-deficient. The 
usual algorithm for the singular value decomposition (SVD) told us that one 
singular value of M was nearly zero compared with the others; but of course 
this is not a proof of what we wanted. We could reduce M mod a prime and 
show the reduction was rank-deficient, but this only gives results modulo that 
prime. Our success came when we showed M was rank-deficient if and only 
if it was deficient mod a list of primes whose product was less than a certain 
bound b. The number b was found by making estimates using ideas from 
numerical analysis and the theory of the SVD decomposition, but where all the 
estimates were computed rigorously in exact arithmetic over a number field. 
See (5.5) for these results. 

We now outline the individual sections of the paper. In ?1 we review facts 
about cuspidal representations and cuspidal cohomology. In ?2 we state our 
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main theorem (2.4), after introducing some notation for describing the struc- 
ture of cuspidal representations. Section 3 reviews an explicit algorithm for 
computing the cohomology of GL(3, 2) and its subgroups, with coefficients in 
any finite-dimensional complex representation. Section 4 reviews a few facts 
from numerical analysis and the theory of the SVD. We put all these ingredi- 
ents together in the last two sections, where we prove our main theorem. The 
most interesting cases, where p = 11 and the cohomology is nonvanishing, are 
treated in ?5; the other cases come in ?6. 

1. BACKGROUND ON CUSPIDAL COHOMOLOGY 

AND CUSPIDAL REPRESENTATIONS 

(1.1) Notation and conventions. For any field K, let SL(n, K)+ be the group 
{y E GL(n, K) I det y = ? 1 } . Let lFq be the finite field of q elements. 

Let F(m) = y E GL(3, 2) I y _ I (mod m)} be the principal congruence 
subgroup of level m. This is a normal subgroup of GL(3, Z) of finite index, 
and is torsion-free for m > 3. Let G = F(p)\ GL(3, 2) for a prime number p; 
this is isomorphic to SL(3, IFp)?, and for p > 2 it is a normal subgroup of 
GL(3, Fp) of index I (p - 1). 

Throughout this paper, the word "representation" means representation on a 
finite-dimensional complex vector space. 

(1.2) We will need some facts about induced representations (see [7, Chapters 
I and III]). Let A be a group, let B C A be a subgroup, and let 7r be a repre- 
sentation of B on the vector space V. Then i naturally makes V into a left 
module over the group ring 2[B]. We define the induced module 

IndA V = {f: A - V I f(ba) =ir(b) * f(a) Va E A, VbEB}. 

This is a left 2[A]-module via the action a' - f(a) = f(aa'). Shapiro's Lemma 
gives a canonical isomorphism 

H* (B, V) H* (A, IndA V). 

Now assume 71 is the trivial representation (i.e., V = C with trivial B- 
action); we denote this by C. Also assume B is a normal subgroup of A. Then 
Ind A C is just the vector space of all functions B\A --* C. This can be identified 
with the group ring C[B\A], and hence it becomes a C[B\A]-bimodule. The 
right action of C[B\A] makes H*(A, IndA C) into a right C[B\A]-module; 
via the Shapiro isomorphism, H*(B, C) is a C[B\A]-module. This module 
structure is the same as that induced by the conjugation action of A on B. 

(1.3) If B < A is normal of finite index, then IndA C is just the regular repre- 
sentation of the finite group B\A (acting on the right). Let {Ri I i = 1, .I. , h} 
be a set of representatives of the irreducible finite-dimensional representations 
of B\A, with dimRi = ni. These extend to representations of A via the 
projection A -** B\A; by abuse of notation we denote the extensions by Ri. 
The group ring breaks up as follows: 

h 

C:[B\A] 
- Ind A 

C 
/@ 

Ji, 
B= 
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where Ii = EJ)" I Rij is a two-sided ideal, and each Rij is isomorphic to Ri. 
Thus Hk(B, C)- h I Mi as right B\A-modules, where Mi is isomorphic to 

fa.=I Hk (A, Ri;) 
We apply these results below when A = GL(3, Z) and B = F(p) is a prin- 

cipal congruence subgroup. The results mean that the cohomology of F(p) can 
be found, in principle, by computing Hk (GL(3, E), R,) for all the irreducible 
representations of G = F(p)\ GL(3, Z) . 

(1.4) The irreducible representations of GL(n, ]Fp) can be described induc- 
tively as follows (see [12]). All irreducible representations of GL(1, lFp) 
are dubbed cuspidal. If n > 1, let P be any proper parabolic subgroup of 
GL(n, IFp). Write P = LU, where L is a Levi component of P and U is 
the unipotent radical. Consider the set I(P) of irreducible components of 
Ind GL(n)p, as p runs over all irreducible representations of L (extended 
trivially to U). Then an irreducible representation of GL(n, lFp) is cuspidal 
if and only if it is not in the union Up I(P), taken over all proper parabolic 
subgroups P. 

Intuitively, the cuspidal representations of GL(n, IFp) for n = 1, 2, ... are 
the basic building blocks for all the representations of these groups. For a 
given n they constitute what parts of the representation theory of GL(n, 1Fp) 
cannot be induced from products of GL(m1, IFp)'s with mi < n. 

(1.5) Now let G = SL(3, Fp)' as in (1.1). We call an irreducible represen- 
tation of G cuspidal if it is a component of PIG for some cuspidal represen- 
tation p of GL(3, IFp). 

Remark. If p 2 (mod 3), one can easily show that the restriction of a cusp- 
idal representation p to G is irreducible. This is true for p = 11, the most 
important value of p for this paper. If p 1_ (mod 3), then PIG will in general 
break up into three irreducible pieces. 

(1.6) In (1.6)-(1.9) we motivate the study of cuspidal representations by de- 
scribing their topological interpretation. 

Let X = 0(3, IR)\ SL(3, IR) be the symmetric space for SL(3, IR)i; the 
group GL(3, E) acts properly discontinuously on it on the right. Let Fo be any 
torsion-free subgroup of finite index in GL(3, Z). Let X/Fo be the Borel-Serre 
compactification of X/Fo (see [6]). Then, for trivial complex coefficients, the 
homology (resp. cohomology) of FO and of X/Fo are canonically isomorphic, 
and we shall identify them. 

(1.7) Let H1k(F0, C) be the part of the cohomology of X/Fo that restricts 
to zero on the Borel-Serre boundary-that is, Hk (F0O, C) is the kernel of the 
restriction map rk: Hk (X/F0, C) -+ Hk (OX/ro, C). The groups H!k(Fo, C) 
are important because Hk(X/Fo, C) can be computed once we know (1) the 
groups H k(FO, C), (2) some facts about the Tits building for GL(3) mod FO, 
and (3) cuspidal cohomology groups for certain subgroups of GL(2, Z). (For 
a precise statement see [3, pp. 415-416], which is in turn based on [16].) 

To compute H/c(F0, C) for all k, it suffices to compute H3(Fo, C) (see 
[3, ?2]). So for the rest of the paper we focus our attention on cohomology in 
degree k = 3. 
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(1.8) We now look more closely at H,3(Fo, C). 

Proposition. H,3(Fo C) is the subspace of H3(X/Fo, C) consisting of those 
classes which can be represented by cuspidal differentialforms. 

A proof of this proposition is given in [3, ?2]. 
Remark. The notion of "cuspidal differential form" used here comes from the 
theory of automorphic forms on general Lie groups. It generalizes the classical 
notion of cusp form on the upper half plane. There is a "philosophy of automor- 
phic cusp forms" analogous to that referred to above for finite groups; again the 
cuspidal contribution to the spectrum of L2(SL(n, R)/]Fo) is the "interesting 
part" that cannot be induced from smaller GL(n)'s [5, 15]. The computation 
of cuspidal cohomology is interesting and challenging for this reason. 

Because of this proposition, we are justified in calling H,3 (F0, C) the cuspidal 
cohomology in degree three; we denote it by H SpTO, C). 

(1.9) Now set FO = F(p), and let G and other notation be as in (1.1). At 
this point we have two notions of "cuspidal cohomology classes" for G. To 
distinguish them, we use the term a-cuspidal for a cuspidal cohomology class a 
for F(p); this is the usage coming from (1.8). If a generates a subrepresen- 
tation of H* (F(p), C) for G all of whose components are cuspidal, a is called 
f-cuspidal; this comes from (1.4-1.5). 

The two notions are related as follows: 

Theorem. (" f-cuspidal ?> a-cuspidal"). Under the isomorphism of (1.6), the 
f-cuspidal cohomology for F(p) pulls back to a subspace of Hc3usp(X/F(p), C). 

Proof. Clearly r3 is a G-equivariant map. Also, H3(OX/Fo) is a sum of in- 
duced representations of the form Ind5 p, where P is a proper parabolic sub- 
group of G and p is a representation of its Levi factor, trivially extended to 
the unipotent radical (as in (1.4)) [16]. Hence, r3 is an intertwining operator 
which intertwines the representation generated by a into a sum of parabolically- 
induced representations. Thus, if a is f-cuspidal, then r3(a) = 0. This im- 
plies a is a-cuspidal by (1.7). El 

Remarks. (1) If V is an irreducible cuspidal representation of G and a is a 
nonzero class in H3(GL(3, 2), V), then a is f-cuspidal when viewed as an 
element of H3(F(p), C), since the G-representation generated by a is isomor- 
phic to V (the contragredient of V). 

(2) In general, unfortunately, H usp(X/F(p), C) is not spanned by coho- 
mology coming from f-cuspidal representations, as shown by the classes found 
in [3]. 

2. STATEMENT OF RESULTS 

In (2.4) we state our main theorems. To fix some necessary notation, we 
begin (2.1-2.3) by describing the structure of the cuspidal representations TA 
of GL(3, IFp), following the expositions in [13] and [10]. 

(2.1) Let U be the standard unipotent subgroup of GL(3, IFp): 
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Let Q be the standard mirabolic subgroup 

Q= {yeGL(3,1Fp) y2(* 2 *)}. 

Let N be the index [Q: U] = (p + 1)(p - 1)2. 
The group GL(3, 1Fp) is generated by the diagonal matrices 

d(al, a2, a3) =( a2 0 (a,, a2, a3 e1Fp) 
0o 0 a3J 

together with U and with the following generators of the Weyl group: 

'O 1 0\ /1 0 10 

z= I 0 0), w= 00 1 

0O 0 1 J0 1 0J 
We will view GL(2, 1Fp) as the subgroup of GL(3, 1Fp) given by 

(ii )* 
0O 0 1, 

GL(2, IFp) is generated by d(aI, a2, 1), z, and the following element of order 
three: 

/0 -1 O' 
h= 1 -1 0. 

0O O 1, 

By abuse of notation we will sometimes write 

Z=(? 1 h=( _1 ) 

and we will write 

u(b) = (Ob1 ) d(al, a2) = a ?). 

(2.2) In this subsection we give the classification of the cuspidal represen- 
tations of GL(3, IFp) up to isomorphism. 

Let e: -p C C be the additive character e(x) = exp(27ix/p). Let X: U - 

Cx be the one-dimensional representation 

/1 bi b2 
X: | 1 b3 |- X e(bl+b3). 

0O O 1J 

Then IndQ x is an irreducible representation t of Q on a vector space V of 
dimension N [10, Proposition 1.2]. 

Let A: la'- CX be a multiplicative character on the cubic extension field 

of IFp . Assume A :$ AP. One can define an irreducible character XA explicitly 
on GL(3, IFp) in a way depending only on A and p (for the precise state- 
ment see [13, ?2.3]). This is the character of a cuspidal representation TA of 
GL(3, IFp) on the vector space V of the preceding paragraph, and every cus- 
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pidal representation arises in this way. The restriction of every TA to Q is 
just t [10, Theorem 2.3]. Representations TA and TA are isomorphic if and 
only if A' equals an element of the set {A, AP, AP }2. 

To define TA, it suffices to give its values on the generators of GL(3, 1Fp) 
listed in (2.1). Its values on d(aI, a2, 1) and z are the same as the values of t 
on these elements. One checks from the definition of XA that TA(d(a, a, a)) = 
A(a). Finally, Helversen-Pasotto uses [17] to give an explicit formula for 
TA(w) [13, p. 12]; we give her formula below in (2.8). 

We pull TA back to a representation of GL(3, E) on V via the homomor- 
phism GL(3, E) -+ GL(3, 1Fp). The pullback is also called TA. 

(2.3) To classify the cuspidal representations, we must classify the multiplica- 
tive characters A: F- , CX . We know A is a homomorphism into the sub- 
group of CX generated by a primitive (p3 - 1)st root of unity C. Fix a genera- 
tor q of the cyclic group Fx . Up to the action of the Galois group of Q(C)/Q, 
every A is given by choosing a positive integer divisor A of p3 - 1 and setting 
A(^m) = Cim. The condition A 7 AP of (2.2) is equivalent to (p2 +p + 1) ti; 
so in the rest of the paper we exclude values of A that are divisible by p2 +p +1. 

Note that if a E Gal(Q(C)/Q), then 

dim H* (GL(3, E), TA) = dim H*(GL(3, E), TU(A)). 

This is because we can compute the dimensions using the Q(C) forms for the 
representations, and a gives a GL(3, Z)-module isomorphism from one repre- 
sentation to the other. (However, the two representations are not equivalent, 
since this map is not Q(C)-linear.) 
(2.4) We now state our main theorem. 

Theorem. Let p be a prime number with 2 < p < 19. Let A: T1px -( Cx be an 
arbitrary multiplicative character A(qm) = Vm with A a divisor of p3 - 1 as in 
(2.3), and let TA be the cuspidal representation of GL(3, 2) on V described 
in (2.2). Then dim H3(GL(3, 2), V) is zero when A is odd, and is given for 
even A by the following table. 

p A dimH3(GL(3, 2), V) 

3 2 0 
5 2,4 0 
7 2, 6, 18, 38 0 
11 2, 10, 14, 70 0 
11 38*, 190 1 
13 2,4, 6, 12, 18, 36, 122, 244 0 
17 2*,4*,8*, 16* 0 
19 2*,6*,18,54,254 0 

Corollary. The principal congruence subgroups F(p) c GL(3, 2) have no cuspi- 
dal cohomology for primes p < 19, except for the nonvanishing classes noted for 
p= 11. 

Remark. An asterisk beside a value of A means that while we have strong nu- 
merical evidence for the result, we do not have a rigorous proof. These cases 
are explained in (6.2) and (6.3). 
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In ? 5 we prove the nonvanishing of the cohomology for p = 11, A = 190. 
The rest of the proof occupies ?6. Sections 3 and 4 contain preliminary material. 

3. COMPUTATION OF CUSPIDAL COHOMOLOGY 

(3.1) When n = 2, 3, 4 we can (at least in principle) explicitly compute the 
cohomology of GL(n, E) with coefficients in an arbitrary representation. Here 
we state the results for n = 3. A reference for the theorem in the trivial- 
coefficient case is [1]; it is straightforward to extend the proof in [1] to show 
that the theorem holds for arbitrary coefficients. 

Theorem. Let po be an arbitrary representation of GL(3, E) on a finite- 
dimensional vector space VO. Then with notation as in (2.1), H3(GL(3, E), VO) 
is isomorphic to the subspace of all v E VO satisfying the linear equations 

(3.1.1) po(d(?1, ?1, ?1)) * v = v (all eight choices of sign), 

(3.1.2) po(z) * v = -v, 

(3.1.3) (po(I) + po(h) + po(h2)) . v = 0, 

(3.1.4) po(w) * v = -v. 

Remarks. 1. The theorem is a simplification of a formula of Soul6 in [18]. 
2. The proof of the theorem uses the well-rounded retract W c X, which is 

described in [1]. This is a GL(n, 2)-equivariant deformation retract of X . For 
any F0 C GL(n, 2) of finite index, W/Fo is compact. W has the structure of a 
locally finite regular cell complex, and FO preserves this cell structure. The con- 
ditions on the v 's are derived from the combinatorics of the top-dimensional 
cells of W and how their faces meet. 

3. We worked with cohomology in ? 1, but Theorem (3.1) deals with ho- 
mology. The difference is unimportant. Our representations are over C; this 
means Hi(GL(3, 2), V)* is isomorphic to Hi(GL(3, 2), V*) for any repre- 
sentation V we are considering and for any i (with ( )* denoting linear 
dual). In particular, the homology and cohomology groups of degree i with co- 
efficients in V have the same dimension, because TA* equals TC(A), where c 
denotes complex conjugation. We will work with homology for the rest of the 
paper. 

4. NUMERICAL FACTS ABOUT MATRICES 

In this section we collect for later use some facts about matrix norms and 
the singular value decomposition (SVD). A reference for this material is [11, 
??2.2-2.3]. 

(4.1) Let 1 be the standard norm z1l2 ? ? Zkl2 on Ck . If A = (aJ) 
is an m x n matrix over C, we define the 2-norm 

JA11 2 = SUp { J 
HlJ XEC , X$A0} 

and the Frobenius norm 
m n 

||A||F= Z E Jalj 12 
1=1 J=1 
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These are norms on the complex vector space of m x n matrices. For matrices 
A of size m x n and B of size n x q, we have the relations 

(4.1.1) IIAB I12 ?, IJAII2 * JIBI12, 

(4.1.2) IJAII2 < JJAHJF ?, ' *i JAI12. 

The values of IIA 12 and IIA IF do not change if A is multiplied by a unitary 
matrix on either side. If A is a block-diagonal matrix, 

/Al ...' 

A= 0 A2 ... 

then the Pythagorean theorem implies 

(4. 1.3) JHAI12 = max HJAijJ2. 

(4.2) If B is any m x n matrix over C, there exist unitary matrices U, V 
of size m x m and n x n respectively, and an m x n matrix S = (sij) with 

-~a1 if i= j 
sij = if i$ 

. 
(vi E R, ai ) ?) 

such that 
B = U * S * V. 

This is the singular value decomposition of B. The ai are called the singular 
values; they are unique up to rearrangement. 

We remark that if B is an invertible n x n matrix, then the singular value 
decomposition is the familiar KAK decomposition in the Lie group GL(n, C). 
Here A is the group of positive real diagonal matrices, and K is the unitary 
group U(n). 

For any B we have 
min(m, n) 

(4.2.1) JIB = E 2 

i=1 

(4.3) Let A be an m x n matrix over C. A maximal square submatrix of A 
is any submatrix of size min(m, n) x min(m, n). 

Lemma. The determinant of any maximal square submatrix of A is bounded in 
absolute value by the product of the singular values of A. 

The proof is an exercise in linear algebra. 

5. PROOF OF THE MAIN PART OF THE THEOREM 

In this section we prove the most interesting case of our main theorem (2.4). 
We show that if p = 1 1 and V is a representation of GL(3, 1Fp) isomorphic 
to the particular cuspidal representation TA with A = 190 (see ?2 for the no- 
tation), then the cuspidal cohomology H3(GL(3, IFp), V) is nonvanishing and 
in fact has dimension 1. We show this by systematically working out the di- 
mension of the subspace defined in Theorem 3. 1, using a mixture of hand and 
machine computation. 
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(5.1) Let 6k = Z[Ak] be the ring of integers of the cyclotomic field Q(Ck), 
for Sk a primitive kth root of unity. The cyclotomic field is of degree 0(k) 
over Q, where 0 is the Euler phi-function. 

We use the notation of (2.1-2.3). For the p and A in the part of the proof we 
are doing now, the representation t is defined over Q(Ci I), and TA is defined 
over Q(CI l, C113-1) = Q(C77). 

190 

(5.2) First we choose an explicit basis of V, following [13, ?2.2]. Recall from 
(2.2) that V - Ind x as representations of Q, meaning V may be identified 
with the space of functions f : GL(2, 1Fp) --+ C satisfying f (u(b) x) = e(b). 
f(x) for all b E lp and all x E GL(2, 1Fp). Let R be the set 

{d(ai, a2) ai E 1Fp} U {z u(b) d(al, a2) b E Fp, ai E FpX} 

(Note that R is a set of coset representatives for U\Q, where as in (2.1) we 
have identified GL(2, 1Fp) c Q c GL(3, 1Fp).) For x E A, define [x] E V by 

[X](U(b)Y)={ e(b) if x =y VyA,,VbeF 

Then {[x] j x E M} forms a vector space basis of V. One can write down a 
formula for the representation t = TAIQ with respect to this basis. 

Observe that if q E Q and [x] for x E R is a basis element of V, then 
q * [x] is just a pth root of unity times another basis element [x'] with x' E 
SR. We express this by saying q permutes the basis elements of V up to 
multiplication by roots of unity. 

(5.3) To prove the theorem, we want to compute H3(GL(3, E), V) using The- 
orem 3.1. In this subsection we begin by finding the common solution to (3.1.1), 
(3.1.2), and (3.1.3) with po = t. Since this involves elements of GL(3) that 
generate the embedded GL(2), we call this "solving the GL(2) problem." 

First we use the basis {[x] I x E I} to find the common solution set of 
(3.1.1) and (3.1.2). We know TA(_I) is the scalar A(-1) = 1 by our choice 
of A, so (3.1.1) holds trivially for TA(_I). The subgroup G2 c GL(3, 1Fp) 
generated by diag(-1, 1, 1), diag(1, -1, 1) and z is of order eight. There 
is a unique way to partition M into subsets, each of order eight, so that G2 
preserves the decomposition. (That is, if E is an eight-element set in the 
decomposition, then G2 acts transitively on E up to multiples by pth roots of 
unity.) It follows that the common solution to (3.1.1) and (3.1.2) has a basis 
consisting of ' N vectors, each of which is a sum of exactly eight basis elements 
with coefficients in the roots of unity. We represent this basis as the columns 
of an N x 1 N matrix M2, which is zero except in a sequence of 8 x I blocks 
down the diagonal, where its entries are pth roots of unity. 

Second, the group G3 c GL(3, Fp) generated by G2 and h permutes the 
basis elements (up to multiplication by pth roots of unity), and its orbits are 
the! (p - 1) = 5 sets {[x] I x E A, detx = +fl} for i E FPx . We used a 
computer to write down t(h). We then used Bareiss' algorithm [9, p. 86] and 
found explicitly on the computer a matrix M3 whose columns represent a basis 
for the kernel of 

(I + t(h) + t(h)2) . M2. 
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The common solution to (3.1.1), (3.1.2), and (3.1.3) has as basis the columns 
of M2 * M3 . 

The computations of M2 and M3 were done in exact arithmetic over &i 1. 
The set M can be ordered so that t(h), and therefore M3 itself, breaks into 
five diagonal blocks M3, 1, ..., 53 5 corresponding to the five G3-orbits in 

(5.4) To finish our proof, it suffices to show that (TA(w) +1) Al2 Al3 (which 
is a 1200 x 50 matrix) has rank 49. In this subsection we give some details 
concerning what TA(W) is. 

Helversen-Pasotto gives a formula [ 13, p. 12] for TA(W) as an N x N matrix. 
The rows and columns of the matrix are indexed by the elements of M that 
are shown underlined; the appropriate matrix entry is given in the body of the 
table. 

d(cl, C2) z * u(co) * d(cl, C2) 

d(al, a2) 0 p-2 *6(al - cla2) A A(a2) * FA(a2C2) 

2* 6(c - aic2) p3 * A(aic-') 

z* u(ao) * d(al, a2) * A-'(c2) e(aoaV a2cl - CocV IC2al) 

*FA(a2C2) * HA(ai a2Cl, C1 C2al) 

Here the letters z, u, d, and e are as in (2.1-2.2). The function 3(x) is 1 if 
x = 0 and 0 otherwise. The letters ao, co E IFp and ai, ci E Fpx (for i = 1,2) 
are arbitrary elements. The functions FA: FPx - C and HA: FPx x -px C are 
defined by 

FA(X) = 3 5(x - N(i1)) * A-1('1) * e(Tr(q)), 

r1EFXp3 

HA(X1, X2) =-p * (X1 + X2) 

+ : 6(xlN(1)+X2)*A-1() 
p3 

e(a- + a(xl Tr(q) + x2 Tr(i1-) - (xl + X2))) 
aEFp 

where Tr(q) and N(i1) are respectively the trace and norm of q E Fx for the 
field extension Fp3/Fp . 

Define 
M4 =p3 * (TA(W) + I) . M2 *M3. 

The formula for TA(W) shows that the entries of M4 lie in &77. As we men- 
tioned at the start of this subsection, we want to show that the 1200 x 50 
matrix M4 has rank 49. 

(5.5) The proof of the next lemma is the technical heart of our result. 
Recall that for any cyclotomic field (4k) there are exactly {O(k) distinct 

complex embeddings (4k) - C modulo complex conjugation. 
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Lemma. Choose any maximal square submatrix of M4, and denote its determi- 
nant by DE e77 . Choose any complex embedding a: Q(77) -a C. Then 

la(D)I < 10265. 

Proof. TA(W) is unitary (with respect to a natural inner product on V ) and is 
different from +I, so conjugation by a unitary matrix makes TA(w) + I into 
a diagonal matrix with 2's and O's on the diagonal. Thus II TA(W) + I112 = 2. 

Applying (4.1.3) to M2, we see that IIM2112 equals the 2-norm of an 8 x 1 
matrix of roots of unity. That is, lM2 112 = 8 . 

By machine we computed IIM3, j 1 in exact arithmetic over &i 1, obtaining 
for 1=1,..., 5 the values 

128 - 670(2) - 11 90(3) - 1460(4) - 1600(5), 

294 + 1530(2) + 1 80(3) + 950(4) + 450(5) 

294 + 350(2) + 1680(3) - 180(4) + 95Q(5) 

259 - 530(2) + 600(3) + 1330(4) - 350(5) 

191 - 770(2) - 910(3) - 500(4) + 580(5) 

(where 0(k) = CkI + Clk for k = 1, . 5. , 5). We found the maximum value of 
Ia(IIM3 jII2 )I over all embeddings a and all j; this value proved to be 680.170 
to six significant figures, so it is certainly bounded above by Q = 680.18. 

Thus, in any complex embedding, 

IIM3112 < max IIM3, j 112 by (4.1.3) 
I 

< max |IM3,j 1F by (4.1.2) 

So 1IM4112 < 113 * 2 * *V X by (4.1.1). Then by (4.1.2), 

11M4H1F < 1 i3 .2. 2 . X V . . 

If a1, .. ., a50 are the singular values of M4 in a given complex embedding, 
then by (4.2.1) we know E501 a2 = 1IM4112 . Now for any k, the maximum of 
the function xIx2 xk on the orthant {(xI, ..., Xk) I xi ) 0, ij=1 xi2 r2} 
of the sphere of radius r is attained when x1 = = xk = r/vk, and the 

maximum has the value ( k So in any complex embedding, the product of 
the singular values of M4 is bounded by 

(1 13 * 2 5/ 2 * /XQ A vr_ 
50*lO 

V-50 1) 04.5 .10264 

~~< J 
< i o265. 

The lemma now follows from the lemma in (4.3). 51 

(5.6) We now conclude the discussion of how we proved the main part of 
Theorem 2.4. 

We chose a particular set {11, .. ., 164} of rational primes such that Hl=i > 
10265. Our li satisfied li _ 1 (mod 77), so that each li splits completely 
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into prime ideals Li, j of &77-that is, (li) = Li, 1 * i 60 as an ideal in 
&77 (the 60 is the degree of Q(77) over Q). Because the li split completely, 

7 7/Li, j IF1, for all i, j. For each Li, j we reduced M4 mod Li,j ,obtaining 
a matrix over F1,, and we computed its rank. The rank proved to be 49 for all 
i = 1, ..., 64 and all j = 1, ..., 60. 

Assume M4 had maximal rank. Then there would exist a maximal square 
submatrix of M4 whose determinant D E 677 was nonzero. By the preceding 
paragraph, D lies in the ideal (11 * 164) of &77. It follows that in some 
complex embedding a we have la(D) I > ..l ' * - 1641 > 10265 . This contradicts 
the lemma in (5.5). So M4 must have rank ? 49 after all. By the computations 
mod Li, j, the rank is exactly 49. 

This proves the main part of Theorem 2.4. 5 

(5.7) In this subsection and the next, we make a few remarks about how we 
checked our computations. In (5.9) we comment on the amount of computer 
time we used. 

Many parts of the computer programs could be debugged by comparing them 
with mathematics done by hand. We worked out M2, t(h), and even some 
blocks of M3 on paper, using the relatively simple formulas for t with re- 
spect to the basis A, and we compared the results with the programs' output. 
We checked the programming of Helversen-Pasotto's complicated formula for 
TA(w) against examples done by hand. We verified this formula, both by check- 
ing her derivation of it [13, ? 2.5] and by writing special programs to compute 
TA (W) from first principles. 

One can show directly that the solution of the GL(2) problem always has 
dimension I NN, where N = (p + 1)(p - 1)2 is as in (2.1). More precisely, we 
have the following result. 

Proposition. Let V be a cuspidal representation of GL(3, E) for p > 5, and 
consider its restriction to GL(2, E) (embedded in GL(3) in the usual way). 
Then 

dimHI(GL(2, E), V) = N. 
24 

The proposition is proved by working out a spectral sequence [7, Chapter VII] 
for the homology of GL(2, E), using the well-rounded retract for GL(2, E) 
described in (3.1, Remark 2). 

The dimension of the computer's solution of the GL(2) problem always 
agreed with the dimension predicted by the proposition. Each of the 1 (p - 1) 
blocks of M3 had 21N p-1 independent columns, as predicted by the proof 
of the proposition. These experimental results held for all p ? 19 and all the A 
for which we ran the programs, even if the cuspidal cohomology vanished for 
these p and A. 

The very fact that the reduction of M4 mod Li, j had less than maximal rank 
for 64. 60 = 3840 different L 's is evidence for the existence of the cusp form, 
since a generic matrix has maximal rank, and bugs tend to produce random, 
generic matrices. Compare the results (6.3) of the programs for other p and 

(5.8) In the early stages of our work we used programs which computed MA2, 
M3, and M4 directly over C in one particular complex embedding. In finding 
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M3, the kernel was computed using a complete-pivoting Gauss-Jordan elimina- 
tion algorithm [11, Algorithm 4.4-1]. We had confidence that the algorithm gave 
accurate results, because it is regarded as a stable algorithm and because the re- 
sults we obtained with it always agreed with the Proposition in (5.7). The rank 
of M4 was found using LINPACK's singular value decomposition algorithm. 
The computations were carried out on the Cray XMP of the Ohio Supercom- 
puter Center. The Cray's 64-bit words provide accuracy to about 20 significant 
figures. To three significant figures, the fifty singular values of M4 were found 
to be (in descending order, and omitting the factor of p3) 

7.22, 5.60, ..., 0.178, 0.116, 8.46. 10-13. 

The drop of more than 10-11 between the 49th and 50th singular value is 
overwhelming numerical evidence that M4 has rank 49. 

(5.9) The computations described in ?5 took a great deal of time, almost all 
of which was for (5.6): computing the reductions of M4 modulo the 64 * 60 = 
3840 prime ideals Lij and finding their ranks. One program had to be run 
64 times, once for each 1i; we ran it on several machines simultaneously, with 
different 1i as input on each. Over a period of months, off and on, we did runs 
on seven Sun's at Harvard, on two Sun's at Ohio State, and on one Sun and a 
VAX 8350 at Oklahoma State. The Sun's ranged from 3/60's to a 4/260 and a 
SparcStation 1. A sample run on the Sparc 1, for one value 1i and about twenty 
of the sixty associated Li, j, showed that the computation for a single Li, j 
required about 1212 seconds of CPU time on this machine. Thus, the whole 
computation of (5.6) would have taken about 3840 * 1212 CPU-sec = 53.86 
CPU-days on the Sparc 1. It took much longer in real life, partly because most 
of the computers available were the slower 3/60's. 

The time for the rest of the computations was miniscule by comparison. 
The calculations over &,I , as described in (5.2-5.3), took 74.2 CPU-sec on the 
Sparc 1. We did not time precisely the CRAY programs described in (5.8); but 
for p = 11 and a given value of A, the entire computation over C took only 
a minute or two in real time. 

All the programming was done in Fortran (the language of the Cray). 

6. CONCLUSION OF THE PROOF OF THE MAIN THEOREM 

We now prove and/or discuss the parts of Theorem 2.4 not covered in ?5. 

(6.1) When p :$ 2 and A is odd, it is easy to prove the theorem. For if A 
is odd, then A(- 1) = - 1, and (3.1.1) applied to TA(_I) = -I implies that 
H3(GL(3, E), V) vanishes. 

(6.2) Let p = 11 and A = 38, and use the other notation of ? 2. We have 
obtained very convincing numerical evidence that 

(6.2.1) dim H3(GL(3, 2), V) = 1 

for this p and A. We used the techniques outlined in (5.8), working over C in 
a particular complex embedding on the Cray. To three significant figures, the 
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fifty singular values of M4 were found to be 

7.62, 5.79, ..., 0.194, 0.158, 1.51 . 10-13. 

As in (5.8), the drop of 10-12 between the 49th and 50th values is overwhelming 
evidence that M4 has rank 49. 

We expect that the techniques of (5.2-5.6) would prove (6.2.1) as a theorem. 
We have not carried out this proof, though, since it would involve even more 
computer time than the case p = 11, i,- = 190 did. 

(6.3) We now discuss how we proved Theorem 2.4 for the primes p other 
than 11 and for the nonasterisked even iA. 

First, let p be one of 5, 7, 13, 17, or 19, and let A have one of the nonas- 
terisked even values in the statement of the theorem. We considered the cy- 
clotomic field K = Q(4p, Q-) over which the representation TA is defined, 
and chose a rational prime I which splits completely in this field. We found 
a prime L of K over 1, and we reduced M4 (defined in (5.2-5.4)) mod L 
in the manner of (5.6), obtaining a matrix over 1Fl. In each case, the matrix 
mod L proved to have maximal rank. Hence, M4 has maximal rank, and by 
Theorem 3.1 the cohomology vanishes for this representation TA. 

The case p = 2 was done on paper. The case p = 3 was handled as in the 
previous paragraph, though our programs needed minor modifications because 
the solution to the GL(2) problem is a little different when p = 3. (For 
example, the proposition of (5.7) is false for p = 3.) 

This proves Theorem 2.4. 5 

Remarks. 1. For the A's with asterisks, we could not run our programs as we 
had originally written them. A prime I splits completely if and only if it is 
congruent to 1 modulo pA , and in the asterisked cases the smallest such I 
exceeds 65536. Finding the rank of M4 mod L would have required recoding 
our routines to use double-precision integers. 

2. For all primes p with 5 < p < 19 and p /A 11, we computed the 
cohomology over C on the Cray by the techniques of (5.8). This confirmed 
Theorem 2.4, since for all such p and all even A, the smallest singular value 
of M4 was always greater than 10-3 and was of the same order of magnitude 
as the neighboring singular values. The computations over C worked for the 
asterisked A's just as well as for the others, giving strong numerical evidence 
that the cuspidal cohomology vanishes for the asterisked A's which occur for 
p = 17 or 19. 
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